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What are Post-Secondary Employment Outcomes and Veteran 
Employment Outcomes?

Post-Secondary Employment Outcomes

- Partnership between Census Bureau and university systems or state 
longitudinal data systems

- Provides national earnings and employment outcomes by institution, 
degree and field

Veterans Employment Outcomes

- Partnership between Census and Army

- Provides national earnings and employment outcomes military 
specialization, service characteristics, employer industry (if 
employed), and veteran demographics
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What are the threats to student privacy?



Protecting the Microdata

• Title 13 requirement:
• The existence of a job held by an individual is confidential

• We do not have a monopoly on microdata – most of our partners have access to the frame 
(all graduates) and most of the earnings data we use to produce the statistics



In-State Median Earnings: $80,000 National Median Earnings: $85,000



How we implement Differential Privacy

• Construct a histogram of earnings for each cell
• Log-normal with parameters based on ACS public-use sample

• Histogram bin ranges are public information

• Add geometric noise to each histogram bin

• Extract percentiles from the resulting protected CDF

• We use a total privacy loss budget of 3, half of which is used on the earnings tables

• Methodology described in Foote, Machanavajjala and McKinney (JPC 2019)
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Simulated Data
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Adding noise
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Advantages of this DP implementation:

• We can aggregate to higher levels and calculate percentiles at those levels (for instance, 
median earnings at an institution)

• Easily implemented in other situations – Veterans Employment Outcomes used the same 
method, but with different histogram cutoffs

• Protection is intuitive for general public

• Code available for broader use (public on GitHub)



Source: Foote, “Measuring Protection-Induced Errors in Earnings Outcomes from PSEO” (2021)



Questions?
andrew.foote@census.gov

Code Here



Extra Slides
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PSEO Output Tables

• Graduate Earnings Table
• 25th, 50th, and 75th percentiles of annual earnings for college and university graduates 

• By degree level, degree major, and post-secondary institution

• One year, five years, and 10 years after graduation

• Employment Flows Table
• Employment by industry sector and Census Division of the country

• By degree level, degree major, and post-secondary institution

• One year, five years, and 10 years after graduation



How well does this protection system perform?

• We compare this protection system to two other candidates:
• Evenly spaced bins

• Smooth sensitivity (Nissim et al 2007)

• We measure relative accuracy:

• Choices for implementer: privacy loss; bin count



Source: Foote, Machanavjjhala and McKinney (JPC 2019). 
Blue is log-normal histogram; red-dash is even histogram; green dash-dot is smooth sensitivity


